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ABSTRACT 

Using an electrical representation, a model of a heat flux DSC apparatus IS given. 
Numerical values of the resistors are computed usmg experunenta done with a Mettler TA 
2000 B heat-flow DSC. Theoretical traces of the meltmg of an Indium sample with inert or 
melting mdium as reference have been computed and compared with experiments: a good 
accord is obtained thus supporting the validity of the model 

INTRODUCTION 

In the field of thermal analysis, differential scanning calorimetry (DSC) is 
a widely used technique. The calorimetric signal. A. is usually seen as the 
representation of the true thermal effect, although several workers [ 1.21 have 
shown that this point of view was not realistic. 

In previous publications [3,4], it has been shown that the heat-flow DSC 
apparatus behaves as a conduction coupled cell calorimeter. and not as a 
Calvet-type microcalorimeter. 

Using the thermal form of Ohm’s law. Baxter [5] gave an electrical 
representation of a duPont DSC apparatus. He did not, however. support his 
view by experiments. In this paper, a simple theoretical model of a heat-flow 
DSC apparatus is given (Mettler TA 2000). Using the data published 
previously [4], the validity of the model is tested. 

THERMAL OHM’S LAW AND DEVELOPMENT OF A MODE1 

There are basically two different approaches to the analysis of the 
response of a calorimeter: (i) a relation is found between power input, S, and 
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calorimetric signal, A [6]; (“) 11 a knowledge model of the calorimeter is 
established using the thermal Ohm’s law. Every resistor or capacitor shown 
exists in reality [7]. 

Thermal Ohm’s law 

We feel it useful for the clarity of the paper to explain in some detail the 
thermallelectrical analogy. 

If temperature and tension are analogous, then heat flow is equivalent to 
intensity. It follows that thermal and electrical resistors have the same 
representation as have thermal and electrical capacitors. A constant tempera- 
ture is seen as an electrical generator of tension. Examples of electrical 
generators are the temperature of the furnace or a thermal effect at constant 
temperature (e.g. melting of a pure substance). 

Remarks on the model 

A disc-type DSC seems to be simple because heat transfer occurs in a very 
small volume, which can be assimilated to a plane. In some ways this type of 
calorimeter looks like a section of a Calvet-type microcalorimeter. 

The very first goal is to obtain the simplest model which correctly 
represents the experiments. However, limitations appear immediately be- 
cause the model is a simplification of the real calorimeter. For example, in 
place of distributed capacitors and resistors, localized elements are used. 

Hypotheses 

The assumptions made were as given below. 
(a) Resistors and capacitors are localized. 
(b) The symmetrical design of the apparatus necessitates a symmetrical 

model. A real calorimeter is not symmetrical. It is assumed that resistors are 
symmetrical, but capacitors different. 

(c) The gas surrounding the disc is in the conduction mode. 
(d) The crucibles and the sample are assimilated to points. 

ELECTRICAL MODEL OF A DISC HEAT-FLOW DSC 

The essential parts of a heat-flow DSC are a sample crucible, C,, and a 
reference crucible, C,, supported by a disc and heated in a furnace to a 
temperature, E. The temperature difference between the sample and refer- 
ence is measured by a thermocouple array of sensitivity g. 

Heat flows from the furnace to the crucibles through the disc and the gas. 
There is a thermal resistor between the bottom of the crucible and the disc. 
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(b) 

Ftg. 1. (a) The electrical circuit of the calorimeter. E. Tension generator (furnace temperature): 
C,, C,. thermal capacitors of sample+crucible and reference+ crucible. respecttvely: C,. C,. 
thermal capacitors of the disc; R,. furnace-crucible thermal resrstor (through the disc): R :. 

cructble-crucible thermal resistor (through the disc): R,. dtscccrucrble thermal reststor: R,. 

furnace-cructble thermal reststor (through the gas): R,. cructble-cructble thermal resistor 

(through the gas); U,. U,, U,. U,. temperatures of the sample cructble. reference cructble. 
disc below the sample. and the reference. respecttvely. (b) The heat flow when A and B are at 

a constant temperature. 

as shown by Baxter [5]. Such a thermal resistor may exist between the 
crucible and the sample (or reference) material. 

The crucibles are very close together and the length of the heat path from 
the furnace to the center of the reference or sample is about half the distance 
between the centers of the two crucibles. Consequently, a resistor bounding 
both crucibles has to be taken into consideration. The gas surrounding the 
crucibles above and below the disc participates in the heat transfer in the 
same way as the disc. The heat capacity of the part of the disc in the vicinity 
of each crucible is an important contribution of the solid disc to the dynamic 
behavior of the calorimeter. 

The temperature difference is measured by thermocouples. They are 
vacuum deposited on the glass disc and it is assumed that the temperature 
difference reading is that of the disc itself [8]. 

This simple description is represented in Fig. 1 (a). 
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The calorimetric signal, A, is given by 

A=g(U,- u,) (1) 

Equivalent heat paths, in the disc or in the gas, have proportional resistors. 
Thus 

R, R, _=- 
R2 R, 

The resistance, Y, of the furnace sample is given by 

1 1 1 -= 
Y R+ 4 RI + R3 

(2) 

For notational convenience, the disc resistor, R,, is used, i.e. 

R, = R, + R, (3) 

COMPUTATION OF THE VALUE OF THE RESISTORS 

Equutions 

The calorimeter is at a constant temperature, 
containing, respectively, the melting compounds 

L(A) ’ L(B) 

E, and has two crucibles 
A and B, such that E > 

A steady state has been attained and thermal capacitors can be ignored. 
For the sake of simplicity T’(A) and T,(B) are labelled A and B. 

In Fig. l(b) currents have been represented and the following equations 
can be formulated 

E-A = R,r, + R,(i, - i3) (4) 

E - B = R,I, + R,(i, + i3) (5) 

U, = E - R,i, (6) 

U4 = E - R,i3 (7) 

By combining eqns. (6) and (7) and replacing i, and l3 from eqns. (4) and 
(5) with L$ - U4 = R,i,, it follows that 

A A-B A-B 

-= “- u4= 1 + R,/R,+2R,/R, 
=- 

R D 

with 

(8) 

(9) 

Equation (8) states that heat flow exchanged between the crucible through 
the disc does not depend on the temperature of the furnace. This is also true 
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Fig. 2. Theoretical and experimental curves for the melting of In with an inert reference. 

for the total heat exchange between sample and reference, and if A = B no 
heat exchange occurs. 

In comparison, the heat flow + = i, entering A is given by 

or, using eqns. (2) and (3) 

4= +(/d-B) 1 (11) 

When melting of A is complete, B is still melting, and a new steady state is 
reached with + = 0. The temperature Ii, of liquid A is given by 
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u 

I 

= E+ B(JWRJW + r/h) 
1 + R,r/R,R,D + r/R, 

(12) 

Replacing A in eqn. (8) with U, from eqn. (12) and differentiating with 
respect to E, we obtain 

dA g -= 
dE D+R,r/R,R,+Dr/R 

(13) 

Determination of the resistors 

In a previous paper [4], the heat flow, 9, entering the sample (indium) and 
the calorimetric signal, A, were measured vs. furnace temperature, using 
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melting indium as reference. The equation of the curve + = f(E) is given by 

c#d[E- T&z)] 

The slope of the curve A = f(E) is given by eqn. (13). The EMF of the 
thermocouple, g, has been measured. 

In the scanning mode, melting of the same In sample (heat of melting, Q) 
with different gases flushing the calorimeter gave a relationship between the 
thermal conductivity of the gas, X, and the area of the peak, S. A linear 
function X = f(l/S) was found. If A = 0, the area of the peak, S,, is given by 

Q= g So 
R, + Rx 

For a different value 

S and S, were computed using the relation X = f( l/S). The ratio (Y is known 
for argon which was used in the experiments. 

R4 s 

a=R,+R3 
=p 

SO - s 

Application to the computation of the resistors 

Experimental determinations give numerical values for r, d A/d E, g and 
(Y. x is taken to be 

R, R4 
x=-z- 

R, R5 

(15) 

From eqn. (14), we obtain R, = (1 + cx)r and with eqn. (2) R, may be 

computed. Equation (13) can be rewritten as 

dA;dE 
=D 1+*)+X* 

i (Y 

leading to a value for D. R, is obtained from eqns. (9) and (15). 

D-l 
R,=R ~ 

d2x+D 

(16) 

(17) 

The resistor R, is given by 

R,=R,-R, 

and from eqn. (15) it follows that 

(18) 

(19) 

It is thus possible for a value of x to compute all the values of the resistors 
using the experimental relationships. 
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MATHEMATICAL BACKGROUND 

Mathematical tools 

The state of the calorimeter at a given time t is defined by four tempera- 
tures, U,(t), U,(t), U3( t) and U,(t), and three inputs, E,(t), E2( t) and E3( t). 
The equations have the form 

ii(t) = a,P,(t) + a,,&(t) +a,&G(t) +a,&&) +M,(Q +&~%(t) 

+b,3E3(t) for irl, 4 (20) 

These equations can be rewritten using matrix notation such that 

ii(t) =AU(t) +&Y(t) (21) 

Solution of this system can be done using a numerical integration method 
or rigorous approach. It seemed more appropriate to use the second method 
to ensure that no error could occur as a result of the mathematical method. 
having in mind that the transcription could easily be done on a micro or 
desk-top computer. 

Solution of the system in eqn. (20) at t > 0 is given by 

U(t) = exp[( t)A] U(0) +/‘exp[( t - r)A] BE( 7)dr 
0 

(22) 

If the solution is desired only at kT, T being the sampling period, the 
solution is 

U[(k+ l)T]=exp[(T)A]U(kT)+iT (‘+‘)rexp{[(k+ l)T--rlA}BE(~)dr 

(23) 

In the case where the input E(t) is constant in the period kT, (k + l)T 
[hence E( kT)], the integral is calculated exactly and eqn. (23) can be 
rewritten to give 

U[(k+ l)T]=exp[(T)A]U(kT)+A-‘(exp[(T)A]-j}BE(kT) (24) 

with i = identity matrix. 
The exponential of the matrix was computed using limited developmen 

and the only approximation done is given by 

expZ=~+(1/1!)Z+(1/2!)22+(1/3!)Z3+... (25) 

Application to the melting of In with an inert reference 

The calorimeter is at a constant temperature, thus U, = U, = CJ3 = U’ = E. 
An indium sample at temperature T is put in the calorimeter. The tempera- 
ture of the In rises to T,, where it is constant during the whole melting 
process. When the melting is complete, the temperature of the sample rises 
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to that of the furnace (E). There are three steps to the experiment, described 
by equations where the inputs are changed. 

Heating of the sample 
Matrix (26) calculated from the model is given by 

(26) 

Melting of the sample 
When U, = T,(In), the system is reduced by one equation and has two 

inputs: E nd T,. The initial conditions are found in matrix (26) at U, = T,. 

(‘JR, 
I 

C,R, 

T,” 
[ 1 E 

(27) 
The heat flow + = Q is given by 

Melting is complete when JdQdt = Q,: A formal calculation of this 
integral has been done using the matrix notation 

Q=CU+DE (29) 

Q[(k + l)T] = Q(kT) + CA-‘{exp[A(T)] -i}U(kT) 

+CA-‘[A-‘{exp[A(T)] -i}-(T)~]BE(~T) 

+(T)DE(~T) (30) 

A and B are found in matrix (27). 

End of experiment 
When melting is complete, matrix (26) describes the current state of the 

calorimeter, with initial conditions found in matrix (27) when Q is equal to 
the heat of melting of the In sample, Qo. 
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Application to the melting of In with an active reference 
In contrast to the foregoing experiment, a reference crucible containing a 

large amount of In is used. Consequently, since the In reference is in the 
process of melting during the experiment, its temperature is constant. As 
previously, the experiment consists of three steps. 

Heating of the sample 
The system has two inputs: E and T,,. The equations are 

II= 
I __(L+L+’ 0 

C, RI R, R, 

I _ 

CTR, 

0 
I _ 

C,R, 

Melting of the sample 
There are three inputs: T,, T, and E. Thus 

1 i/3 1 
-- 

( 
L+‘+L _ 1 c3 R, R2 R, i WI = ty4 1 1 -- 

GR2 ( 
L+L+_ 

G R, R, R, 

+ 

0 -- 
(32) 

The heat flow entering the sample is given by 

End of experiment 
System (31) was used and the initial conditions were found as for the 

system described previously. 

RESULTS 

An HP 85 microcomputer 
calculation needed 90 s. 

with ROM matrix was used. A complete 
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Melting of In with Inert reference 

It was not possible to calculate directly every value of the resistors of the 
calorimeter. A trial-and-error method was used. A first value of x d 0.21 was 
taken and the resistors were computed. A greater value of x gives R, -c 0 

which is impossible. Arbitrary values of C, and C, were given. The heat 
capacities, C, and C,, the heat of fusion of the indium sample, and the 
temperature of the furnace were known. The computation of U, - U4 = f(t) 
was performed and plotted vs. time with the experimental curve and temper- 
ature of the disc, U, and U,. This procedure was repeated so as to obtain the 
best fit of the computed and experimental plots. 

Figure 2 shows the experimental and theoretical curves obtained for 
x = 0.135 and with the following numerical values: C, = 57.4 mJ K- ‘; 
C, = 56.4 mJ K-‘; C, = 95 mJ K-‘; C,= 129 mJ K-‘; R, = 0.1878 K 
mW_‘; R, = 1.391 K mW-‘; R, = 0.010 K mW-‘; R, = 0.784 K mW-‘; 
R, = 5.807 K mW_‘; g= 134 PV K-‘; Q, = 791.7 mJ; T, = 156.61”C; 
E = 157.09”C. The initial conditions were 25’C, E, E and E for U,, U,, U, 

and U,, respectively. 
R, is a contact resistor between the crucible and the disc. An approximate 

value of this resistor can be found, assuming that heat transfer occurs mainly 
through a layer of gas between the bottom of the crucible and the disc [9]. A 
reasonable value for the thickness of the gas layer is lo-* mm, and the 
diameter of the crucible is 6 mm. Thus, R, = 0.0149 K mW- ’ is in good 
agreement with the previous determination. 

Evolution of the temperature of the disc, U, and U,, clearly explains the 
shape of the calorimetric signal. 

Melting of In with In as reference 

The values for the resistors and capacitors found previously were used: 
the theoretical and experimental calorimetric signals are shown in Fig. 3. The 
curves are in good agreement. 

DISCUSSION 

The model correctly represents the experiments and is a reasonable 
representation of the calorimeter. It is to be noted that a slight difference 
appears at the end of the melting of the In sample. The sample crucible 
resistor probably varies during the melting of the sample and is responsible 
for the change in the calorimetric signal. This resistor was not taken into 
consideration in this model. A more complex model could most probably 
give a better fit, but it seems difficult to imagine experiments which would 
give the values of every resistor or capacitor. 



316 

CONCLUSION 

The model of a disc heat-flux DSC apparatus correctly represents the 
experiments described in this paper. 

Since the calorimeter has coupled cells, correction of the calorimetric 
signal in the scanning mode seems to be important for a correct interpreta- 
tion of the thermal effect. 
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